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Abstract

A strategy for non-linear stochastic optimal control of strongly non-linear systems subject to external
and/or parametric excitations of bounded noise is proposed. A stochastic averaging procedure for strongly
non-linear systems under external and/or parametric excitations of bounded noise is first developed. Then,
the dynamical programming equation for non-linear stochastic optimal control of the system is derived
from the averaged It #o equations by using the stochastic dynamical programming principle and solved to
yield the optimal control law. The Fokker–Planck–Kolmogorov equation associated with the fully
completed averaged It #o equations is solved to give the response of optimally controlled system. The
application and effectiveness of the proposed control strategy are illustrated with the control of cable
vibration in cable-stayed bridges and the feedback stabilization of the cable under parametric excitation of
bounded noise.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

As indicated by Housner et al. [1] that stochastic control of non-linear systems is an interesting
yet difficult problem. Most studies in the field of stochastic control of structures until recently use
a linear quadratic Gaussian (LQG) strategy. In the last few years, a non-linear stochastic optimal
control strategy has been proposed by the present first author and his co-workers [2–4] based on
the stochastic averaging method for quasi Hamiltonian systems [5–7] and the stochastic dynamical
programming principle [8–10]. The proposed control strategy has been extended to feedback
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stabilization [11] and feedback maximization of reliability [12,13] of non-linear stochastic systems,
and to the non-linear stochastic optimal control of partially observable linear systems [14].

In the previous study of non-linear stochastic optimal control, the random excitation is
assumed to be Gaussian white noise or wideband random process. However, quite often, the
random loading of structures is a narrowband random process. One example is the excitation
experienced by the cables in cable-stayed bridges caused by the deck and/or towers in vortex
shedding and buffeting. The popular model of a narrowband random excitation is the response of
a second order linear filter to Gaussian white noise. A rather new model of narrowband random
excitation is the so-called bounded noise. A bounded noise is a harmonic function with constant
amplitude and stochastic frequency and phase. This model was first proposed by Stratonovich [15]
and has been used by many researchers in the study of stochastic stability of linear systems [16–18]
and chaotic motion of Duffing oscillator [19].

In the present paper, the non-linear stochastic optimal control of strongly non-linear systems of
single degree of freedom (s.d.o.f.) under external and/or parametric excitations of bounded noise
is investigated. For this purpose, a stochastic averaging procedure for strongly non-linear systems
under external and/or parametric excitations of bounded noise without control is first developed.
The procedure is then applied to the controlled systems to obtain the controlled averaged It #o
stochastic differential equations, from which the dynamical programming equations for finite and
semi-infinite time interval controls are derived based on the stochastic dynamical programming
principle. The optimal control law is determined from solving the dynamical programming
equations. The Fokker–Planck–Kolmogorov (FPK) equation associated with fully completed
averaged It #o equations is solved to yield the response of optimally controlled systems. The
feedback stabilization of the systems is also studied and the stability of the controlled systems is
determined by evaluating its Lyapunov exponent. The application and effectiveness of the control
strategy are illustrated with the control of cable vibration in cable-stayed bridges.

2. The stochastic averaging method

The stochastic averaging method for s.d.o.f. strongly non-linear systems subject to external
and/or parametric excitations of Gaussian white noises, wideband random processes and
combined Gaussian white noise and harmonic functions, respectively, has been developed [20–22].
Here, we develop the stochastic averaging method for strongly non-linear systems under external
and/or parametric excitations of narrowband random process represented by bounded noise. The
equation of motion of the system studied is of the form

.X þ gðxÞ ¼ ef ðX ; ’XÞ þ ehðX ; ’XÞxðtÞ; ð1Þ

where g represents a strongly non-linear restoring force; e is a small parameter; ef represents light
linear and/or non-linear damping forces; eh denotes the amplitude of excitation; xðtÞ is bounded
noise of the form

xðtÞ ¼ sinðOt þ s %BðtÞ þ DÞ; ð2Þ

in which O and s are constants, O is the center frequency, s represents the intensity of frequency
stochastic perturbation; %BðtÞ is the standard Wiener process; D is a random phase uniformly
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distributed in ½0; 2p�: It can be shown that xðtÞ is a stationary process in wide sense with spectral
density

SðoÞ ¼
s2

4p
o2 þ O2 þ s4=4

½ðo2 � O2 � s4=4Þ2 þ s4o2�
ð3Þ

and auto-correlation function [23]

RðtÞ ¼
1

2
exp �

s2

2
jtj

� �
cosOt: ð4Þ

The bandwidth of xðtÞ depends mainly on s: It is narrow band when s is small and wide band
when s is large.

Suppose that the non-linear conservative oscillator

.x þ gðxÞ ¼ 0 ð5Þ

possesses a family of periodic solutions in phase plane (x; ’x) surrounding ðd�; 0Þ: The periodic
solution can be expressed as

xðtÞ ¼ a� cosj�ðtÞ þ d�; ð6Þ

’xðtÞ ¼ � a�nða�;j�Þsin j�ðtÞ; ð7Þ

where

j�ðtÞ ¼ tðtÞ þ y�; ð8Þ

nða�;j�Þ ¼
dt
dt

¼
2½Uða� þ d�Þ � Uða�cosj� þ d�Þ�

a�2
sin2 j�

� �1=2

: ð9Þ

a� and d� are constants and related by the potential energy

UðxÞ ¼
Z x

0

gðuÞ du ð10Þ

and the total energy

H ¼ ’x2=2 þ UðxÞ ð11Þ

as follows:

Uða� þ d�Þ ¼ Uðd� � a�Þ ¼ H: ð12Þ

cosj�ðtÞ and sin j�ðtÞ are the called generalized harmonic functions. Obviously, a�; nða�;j�Þ
and y� are the amplitude, instantaneous frequency and phase, respectively, of the oscillator.

Expanding n�1 into Fourier series

n�1ða�;j�Þ ¼ C0ða�Þ þ
XN
n¼1

Cnða�Þ cos nj� ð13Þ

and then integrating Eqs. (9) and (13) with respect to t yield

t ¼ C0ða�Þtþ
XN
n¼1

1

n
Cnða�Þ sin nj�: ð14Þ
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Letting t ¼ 2p in Eq. (14) leads to the average period

Tða�Þ ¼ 2pC0ða�Þ ð15Þ

and average frequency

oða�Þ ¼ 1=C0ða�Þ ð16Þ

of the oscillator.
Now consider the response of system (1). Since e is small, it can be assumed that the solution of

the system is of the form

X ðtÞ ¼ A� cosF�ðtÞ þ D�; ð17Þ

’XðtÞ ¼ �A�nðA�;F�ÞsinF�ðtÞ; ð18Þ

where

F�ðtÞ ¼ tðtÞ þY�ðtÞ; ð19Þ

nðA�;F�Þ ¼
dt
dt

¼
2½UðA� þ D�Þ � UðA� cosF� þ D�Þ�

A�2
sin2 F�

� �1=2

; ð20Þ

where A�;D�;F�;Y�; t and n are random processes. Differentiating Eq. (17) with respect to t and
equating the resultant to Eq. (18) yield

’A�ðcosF� þ %hÞ � ’Y�A� sinF� ¼ 0; ð21Þ

where

%h ¼
dD�

dA� ¼
gð�A� þ D�Þ þ gðA� þ D�Þ
gð�A� þ D�Þ � gðA� þ D�Þ

ð22Þ

which is obtained from differentiation of Eq. (12) with respect to a�: Differentiating Eq. (18) with
respect to t and then substituting the resultant into Eq. (1) lead to

’A� nðA�;F�ÞsinF� þ A� @

@A� ½nðA
�;F�ÞsinF��

� �
þ ’Y� @

@F�
½AnðA�;F�ÞsinF��

¼ �ef ðA� cosF� þ D�;�A�nðA�;F�ÞsinF�Þ

� ehðA� cosF� þ D�;�A�nðA�;F�ÞsinF�ÞxðtÞ: ð23Þ

Solving Eqs. (21) and (23) for ’A� and ’Y�; we obtain

dA�

dt
¼ eF1ðA�;F�;Ot þ L�Þ;

dY�

dt
¼ eF2ðA�;F�;Ot þ L�Þ; ð24Þ

where L� ¼ sBðtÞ þ D;

eF1 ¼ �
eA�

gðA� þ D�Þð1 þ %hÞ
½ f ðA� cosF� þ D�;�A�nðA�;F�ÞsinF�Þ

þ hðA�cosF� þ D�; � A�nðA�;F�ÞsinF�ÞsinðOt þ L�Þ�nðA�;F�ÞsinF�;
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eF2 ¼ �
e

gðA� þ D�Þð1 þ %hÞ
½ f ðA�cosF� þ D�;�A�nðA�;F�ÞsinF�Þ

þ hðA� cosF� þ D�; � A�nðA�;F�ÞsinF�ÞsinðOt þ L�Þ�nðA�;F�ÞðcosF� þ %hÞ: ð25Þ

Since we are interested in narrowband excitation and resonant case, it is assumed that s is small
and

O
oðA�Þ

¼
q

p
þ d; ð26Þ

where p and q are relatively prime positive small integers and d is a detuning parameter of the
order of e: Using Eqs. (14) and (26), we obtain

Ot ¼
q

p
F� þ dt�

q

p
Y� þ O

XN
n¼1

1

n
CnðA�Þsin nF�: ð27Þ

Introduce new variable

G� ¼ dt�
q

p
Y� þ L�; ð28Þ

which denotes the phase difference of the excitation and response. Then

Ot þ L� ¼ Cþ G�; ð29Þ

where

C ¼ CðA�;F�Þ ¼
q

p
F� þ O

XN
n¼1

1

n
CnðA�Þsin nF�: ð30Þ

Regarding Eq. (28) as a transformation from Y� to G�; we obtain the following It #o equations
from Eq. (24):

dA� ¼ eF1ðA�;F�;Cþ G�Þdt;

dG� ¼
O

oðA�Þ
�

q

p

� �
nðA�;F�Þ �

q

p
eF2ðA�;F�;Cþ G�Þ

� �
dt þ s dBðtÞ: ð31Þ

Note that e and d are small so that A� and G� are slowly varying processes while F� is rapidly
varying process. Averaging the right hand side of Eq. (31) with respect to F� leads to the
following averaged It #o equations:

dA ¼ m1ðA;GÞ dt;

dG ¼ m2ðA;GÞ dt þ s dBðtÞ; ð32Þ

where

m1 ¼ /eF1ðA�;F�;Cþ G�ÞSF� ;

m2 ¼
O

oðA�Þ
�

q

p

� �
nðA�;F�Þ �

q

p
eF2ðA�;F�;Cþ G�Þ

� �	 

F�

: ð33Þ

and / 	SF� denotes the averaging operation. Averaging with respect to F� removes the rapid
fluctuation of small amplitude superposed on the slow drift and smoothens the response.
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The FPK equation associated with It #o averaged equation (32) is

@p

@t
¼ �

@

@a
ðm1pÞ �

@

@g
ðm2pÞ þ

1

2
s2@

2p

@g2
; ð34Þ

where p ¼ pða; g; tja0; g0Þ or p ¼ pða; g; tÞ depending on the form of initial condition given, i.e.,

p ¼ dða � a0Þdðg� g0Þ; t ¼ 0 ð35Þ

or

p ¼ pða0; g0Þ; t ¼ 0: ð36Þ

The boundary conditions with respect to a are

p ¼ finite; a ¼ 0 ð37Þ

and

p; @p=@a-0 as a-N: ð38Þ

The conditions with respect to g is periodic, i.e.,

pjg ¼ pjgþ2np; ð39Þ

ð@p=@gÞjg ¼ ð@p=@gÞjgþ2np: ð40Þ

Boundary condition (37) is qualitative and can be made to be quantitative one by using Eq. (34)
and m1;m2 at a ¼ 0: FPK equation (34) together with its initial and boundary conditions can be
solved numerically by using the method of path integrations as did in Ref. [22]. The statistics of
the response of system (1) can be obtained from the solution to FPK equation (34).

3. Non-linear stochastic optimal control

Now consider the non-linear stochastic optimal control of system (1). The equation of
controlled system is of the form

.X þ gðX Þ ¼ ef ðX ; ’XÞ þ ehðX ; ’XÞxðtÞ þ eekðX ; ’XÞuk; k ¼ 1; 2;y;m; ð41Þ

where uk ¼ ukðX ; ’XÞ are feedback control, eek are their amplitudes and the other notations are the
same as in Eq. (1). By applying the stochastic averaging method developed in the last section to
system (41), the following averaged It #o equations are obtained:

dA ¼ mu
1ðA;G;/uSÞ dt;

dG ¼ mu
2ðA;G;/uSÞ dt þ s dBðtÞ; ð42Þ

where u ¼ ½u1; u2;y; um�T

mu
1 ¼m1ðA;GÞ

�
eA�uk

gðA� þ D�Þð1 þ %hÞ
ekðA� cosF� þ D�;�A�nðA;F�ÞsinF�ÞnðA�;F�ÞsinF�

	 

F�

;
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mu
2 ¼m2ðA;GÞ

þ
q

p

euk

gðA� þ D�Þð1 þ %hÞ
ekðA�cosF� þ D�;�A�nðA�;F�ÞsinF�ÞnðA�;F�Þ

	


 ðcosF� þ %hÞ



F�
: ð43Þ

m1 and m2 are defined by Eq. (33). Eq. (42) implies that ðA;GÞ is a controlled diffusion process, to
which the stochastic dynamical programming principle [8–10] can be applied.

The optimal feedback control law depends on the objective of the control, which is expressed in
terms of a performance index. In the present section, we are interested in the control of the
response in a finite or semi-infinite time interval. For this purpose, the following form of a
performance index is taken:

J ¼ E

Z tf

0

LðA;G;/uSÞ dt þ GðAðtf Þ;Gðtf ÞÞ
� �

ð44Þ

for finite time interval control, or

J ¼ lim
tf -N

1

tf

Z tf

0

Lða; g;/uSÞ dt ð45Þ

for semi-infinite time interval control. In Eqs. (44) and (45), L is called cost function and G is final
cost. The control with performance (45) is called ergodic control. Based on the stochastic
dynamical programming principle [8–10], the following dynamical programming equation can be
established:

@V

@t
¼ �min

u
Lða; g;/uSÞ þ mu

1

@V

@a
þ mu

2

@V

@g
þ

1

2
s2@

2V

@g2

� �
ð46Þ

for finite time interval control, or

Z ¼ min
u

Lða; g;/uSÞ þ mu
1

@V

@a
þ mu

2

@V

@g
þ

1

2
s2@

2V

@g2

� �
ð47Þ

for semi-infinite time interval control. In Eq. (46)

V ¼ V ða; g; tÞ ¼ E GðAðtf Þ;Gðtf ÞÞ �
Z t

tf

LðA;G;/uSÞ dt

" #
ð48Þ

is called value function with final time condition

Vða; g; tf Þ ¼ E½GðAðtf Þ;Gðtf Þ�: ð49Þ

In Eq. (47),

Z ¼ lim
tf -N

1

tf

Z tf

0

Lða; g;/u�SÞ dt; ð50Þ

where Z is optimal average cost and u� is the optimal control.
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The optimal feedback control u� is determined by minimizing the right hand side of Eq. (46) or
(47) with respect to u: Suppose that

Lða; g;/uSÞ ¼ L1ða; gÞ þ/uTRuS; ð51Þ

where R ¼ diagðR1;R2;y;RmÞ with Rk > 0: Then the optimal feedback control law is

u�k ¼
1

2Rk

eekða�;j�Þnða�;j�Þ
gða� þ d�Þð1 þ %hÞ

a�sin j�
@V

@a�
�

q

p
ðcosj� þ %hÞ

@V

@g�

� �
; k ¼ 1; 2;y;m: ð52Þ

Substituting u�k into Eq. (43) for uk and averaging the second terms on the right hand side of
Eq. (43) with respect to F� yield

mc
1ðA;G;V Þ ¼m1ðA;GÞ �

eA�u�k
gðA� þ D�Þð1 þ %hÞ

ekðA�cosF� þ D�;
	

� A�nðA�;F�ÞsinF�ÞnðA�;F�ÞsinF�



F�
; ð53Þ

mc
2ðA;G;V Þ ¼m2ðA;GÞ þ

q

p

eu�k
gðA� þ D�Þð1 þ %hÞ

ekðA�cosF� þ D�;
	

� A�nðA�;F�ÞsinF�ÞnðA�;F�ÞðcosF� þ %hÞÞ



F�
:

The final dynamical programming equation is obtained from Eq. (46) or (47) by replacing mu
1; mu

2

with mc
1; mc

2; respectively. i.e.,

�
@V

@t
¼ Lða; g;/u�SÞ þ mc

1

@V

@a
þ mc

2

@V

@g
þ

s2

2

@2V

@g2
ð54Þ

for finite time interval control, or

Z ¼ Lða; g;/u�SÞ þ mc
1

@V

@a
þ mc

2

@V

@g
þ

s2

2

@2V

@g2
ð55Þ

for semi-infinite time interval control. The averaged It #o equations for controlled system (41) are
obtained from Eq. (42) by replacing mu

1; mu
2 with mc

1; mc
2; respectively, i.e.,

dA ¼ mc
1ðA;G;VÞ dt;

dG ¼ mc
2ðA;G;VÞ dt þ s dBðtÞ: ð56Þ

Solving Eq. (54) or (55) for V ¼ V ða; g; tÞ or V ¼ V ða; gÞ and then substituting it into Eq. (56)
yield the fully completed averaged It #o equations for A; G: The response statistics of the optimally
controlled system (41) can be obtained from solving the FPK equation associated with It #o
equation (56) by using the method of path integration.

4. Vibration control of cables under external excitation

The bridge stay cables are susceptible to vibration under wind loading due to their large
flexibility, relative small mass and very low inherent damping. The active control of cable
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vibration has been studied by numerous researchers [24–28]. In almost all these studies, the wind
loading is modeled as harmonic function. However, wind loading is actually random. As indicated
by Lin et al. [17] that the bounded noise is a good model for wind turbulence. So, here we take it
as the model of cable excitation. Since we are interested in the control of resonant vibration of
cables and usually only one mode of a cable is resonant, here the first mode of the cable is taken as
an example. For the control of the other mode of the cable, only the modal parameters needed to
be changed. The equation of the controlled system is of the form [29]

.X þ 2zo1
’X þ o2

1X þ bX 3 ¼ mxðtÞ þ u1ðtÞ þ Xu2ðtÞ; ð57Þ

where o2
1 ¼ p2T0=L2r is the natural frequency of first mode of cable; T0 is the tension of the cable

without vibration; L is the initial length of the cable; r is the mass per unit length of cable; z is the
damping ratio of the first mode of the cable; constant b ¼ p2o2

1=4LZ0 represents the intensity of
non-linearity of the cable in large amplitude vibration; Z0 is the initial extension due to tension
T0; mxðtÞ is the first modal excitation; u1ðtÞ ¼ ½2 sinðps=LÞ=rL�F ðtÞ; FðtÞ is the transverse control
force and s is the distance along the cable axis from acting point of control force FðtÞ to the end of
the cable; u2 is the active stiffness control via boundary motion [24], see Fig. 1.

For the present example,

gðxÞ ¼ o2
1x þ bx3;

UðxÞ ¼ o2
1x2=2 þ bx4=4;

d� ¼ 0; %h ¼ 0;

nða�;j�Þ ¼ ðo2
1 þ 3ba�

2

=4 þ ba�
2

cos 2j�=4Þ1=2: ð58Þ
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We are interested in the case of primary resonance, i.e.,

p ¼ q ¼ 1; O=oðaÞ ¼ 1 þ d: ð59Þ

In this case,

mu
1 ¼ m1ðA;GÞ �

nðA�;F�ÞsinF�

o2
1 þ bA�2 ½u1 þ ðA� cosF�Þu2�

mu
2 ¼ m2ðA;GÞ þ

nðA�;F�ÞcosF�

ðo2
1 þ bA�2ÞA� ½u1 þ ðA�cosF�Þu2�;

m1ðA;GÞ ¼ � zo1A
o2

1 þ 5bA2=8

o2
1 þ bA2

�
m cosG

o2
1 þ bA2


 nðA�;F�ÞsinðF� þ O
XN
n¼1

1

n
CnðA�Þsin nF�ÞsinF�

* +
F�

;

m2ðA;GÞ ¼
O

oðAÞ
� 1

� �
/nðA�;F�ÞSF� þ

m sin G
ðo2

1 þ bA2ÞA


 nðA�;F�ÞcosðF� þ O
XN
n¼1

1

n
CnðA�Þsin nF�ÞcosF�

* +
F�

: ð60Þ

Consider the ergodic control with cost function of the form of Eq. (51) with m ¼ 2: According to
Eq. (52), the optimal control law is

u�1 ¼
1

2R1

nða�;j�Þ
ðo2

1 þ ba�2Þa�
a�sin j�

@V

@a�
� cosj�

@V

@g�

� �
;

u�2 ¼
1

2R2

nða�;j�Þcosj�

o2
1 þ ba�2 a�sin j�

@V

@a�
� cosj�

@V

@g�

� �
: ð61Þ

The final dynamical programming equation is of the form

Z ¼L1ða; gÞ þ m1ða; gÞ
@V

@a
þ m2ða; gÞ

@V

@g
�

m11ðaÞ
4R1

þ
m21ðaÞ
4R2

� �
@V

@a

� �2

�
m12ðaÞ
4R1

þ
m22ðaÞ
4R2

� �
@V

@g

� �2

þ
s2

2

@2V

@g2
; ð62Þ

where

m11ðaÞ ¼
o2

1 þ 5ba2=8

2ðo2
1 þ ba2Þ2

; m12ðaÞ ¼
o2

1 þ 7ba2=8

2a2ðo2
1 þ ba2Þ

;

m21ðaÞ ¼
ðo2

1 þ 3ba2=4Þa2

8ðo2
1 þ ba2Þ2

; m22ðaÞ ¼
3ðo2

1 þ 11ba2=12Þ

8ðo2
1 þ ba2Þ2

: ð63Þ

Eq. (62) can be solved by expanding V and the coefficients of the equation into Fourier series
with respect to g and then expanding all the Fourier coefficients into Taylor series. See the
Appendix for detail. It is shown that an approximate solution of Eq. (62) with enough accuracy is
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of the form

V ða; gÞ ¼ V02a2 þ Vc
11a cos gþ Vs

11a sin g ð64Þ

where V02; Vc
11 and Vs

11 are constants depending on the system parameters. In this case, the fully
completed averaged It #o equations of the optimally controlled system are

dA ¼ ½m1ðA;GÞ þ m�
1 ðA;GÞ� dt;

dG ¼ ½m2ðA;GÞ þ m�
2 ðA;GÞ� dt þ s dBðtÞ; ð65Þ

where m1 and m2 are defined by Eq. (60),

m�
1 ¼ �

o2
1 þ 5bA2=8

4R1ðo2
1 þ bA2Þ2

ð2V02A þ Vc
11cosGþ Vs

11sin GÞ;

m�
2 ¼

o2
1 þ 7bA2=8

4R1Aðo2
1 þ bA2Þ2

ðVc
11sin G� Vs

11cosGÞ: ð66Þ

Solving the FPK equation associated with It #o equations (65) by using the method of path
integration yields stationary probability density pða; gÞ: A numerical result is shown in Fig. 2(a).
To check the result, the associated simulation result is shown in Fig. 2(b). The corresponding
results for the system without control obtained by using the proposed stochastic averaging
method and from digital simulation are shown in Figs. 3(a), and (b), respectively. It is seen that
the probability density is bimodal and jump may occur in the response of uncontrolled system
while probability density is unimodal and no jump may occur in the response of controlled
system. The mean and mean square of vibration amplitude are reduced by control from 1.2082 to
0.4678, and from 1.6311 to 0.2297, respectively. One more set of results are shown in Figs. 4 and 5,
where the mean and mean square of vibration amplitude are also reduced remarkably (from
0.8618 to 0.4978, and from 0.7609 to 0.2393, respectively) by control. It is seen that the difference
in peak locations in a direction of the probability densities obtained by using the analytical
method and from digital simulation is very small, which implies that the difference in mean
responses predicted by using the two methods is small. The difference in peak heights of the two
probability densities is slightly larger, which implies that the difference in the mean square
response predicted by using the two methods is slightly larger.

To compare the proposed control strategy with LQR controller designed for the linearized
system model, consider the degenerated linear equation of (57) with u2 ¼ 0; i.e.,

.X þ 2zo1
’X þ o2

1X ¼ mxðtÞ þ u1ðtÞ: ð67Þ

For this system, the optimal control law (61) is reduced to

u�1 ¼
1

2R1o1a�
a�sin j�

@V

@a�
� cosj�

@V

@g�

� �
ð68Þ

and the solution to the final dynamical programming equation (62) is

V ¼ V02a2 þ Vc
11a cos gþ Vs

11a sin g: ð69Þ
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Substituting Eq. (69) into Eq. (68), one obtains

u�1 ¼ �
V02

R1o2
1

’x þ
Vc

11

2R1o1
sinðOt þ sBðtÞ þ DÞ �

Vs
11

2R1o1
cosðOt þ s %BðtÞ þ DÞ ð70Þ

which depends on ðZ� L100Þ=R1; Lc
111=R1 and Ls

111=R1:
To use the LQR controller, let X ¼ ½X1;X2�T; where X1 ¼ X ; X2 ¼ ’X and rewrite Eq. (67) in

the form of state equation

’X ¼ AXþ B½uðtÞ þ mxðtÞ�; ð71Þ
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where

A ¼
0 1

�o2
1 �2zo1

" #
; B ¼

0

1

" #
: ð72Þ

For semi-infinite time interval control, the performance index for LQR is of the form

J ¼ lim
tf -N

1

tf

Z tf

0

ðXTSXþ Ru2Þ dt; ð73Þ

ARTICLE IN PRESS

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

a

0

1

2
3

4
5

6

 

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

γ

p(a,γ)
p(a,γ)

0

0.5

1

1.5

a

0

1

2
3

4
5

6

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

γ

p(a,γ)
p(a,γ)

(a)

(b)

Fig. 3. Stationary probability density pða; gÞ of system (57) without control ðu1 ¼ u2 ¼ 0Þ: The parameters are the same

as those in Fig. 2; (a) analytical result; (b) from digital simulation.

W.Q. Zhu et al. / Journal of Sound and Vibration 274 (2004) 701–724 713



where R is a positive constant and

S ¼
S11 S12

S21 S22

" #
ð74Þ

is a non-negative matrix. The optimal control force is of the form

u� ¼ �
1

R
BTPX ¼ �

p12

R
X �

p22

R
’X; ð75Þ
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where matrix P satisfies the following Ricatti equation:

PAþ ATPþ S� RPBBTP ¼ 0: ð76Þ

u� in Eq. (75) depends on S11=R and S22=R (in case S12 ¼ S21 ¼ 0). Substituting Eq. (68) or (75)
into Eq. (60) and then into Eq. (65) after averaging lead to the fully completed averaged It #o
equation. The response of optimally controlled cable is obtained from solving the FPK equation
associated with the completely averaged It #o equation.

The following two criteria are introduced for comparison:

K1 ¼
su

x � sc
x

su
x


 100%; ð77Þ

K2 ¼
K1

ðsu=seÞ
; ð78Þ

where su
x and sc

x stand for the standard deviations of the responses of uncontrolled and optimally
controlled systems, respectively; su and se stand for the standard deviations of control force and
excitation, respectively. K1 denotes the percentage reduction in the standard deviation of the
response, i.e., the effectiveness of a controller while K2 the efficiency of a controller. Obviously,
the larger K1 and K2 are, the better the control strategy is.

K1 and K2 versus ðZ� L100Þ=R1 and Lc
111=R1 obtained by using the proposed control strategy

are shown in Figs. 6 and 7, respectively. K1 and K2 versus S11=R and S22=R obtained by using
LQR are shown in Figs. 8 and 9, respectively. The system parameters are the same for all these
figures. It is seen from these figures that the effectiveness of the proposed strategy can be slightly
better than that of LQR while the efficiency of the proposed controller is much higher than that of
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LQR. These differences in effectiveness and deficiency of the two controllers come from the
difference in optimal control forces in Eqs. (68) and (75). The optimal control force in LQR
increases the stiffness and damping while that in the proposed controller reduces the external
excitation except increasing damping.
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5. Feedback stabilization of cables under parametric excitation

The cable vibrations caused by the parametric excitation of deck and/or towers in vortex
shedding and buffeting were observed in a number of cable-stayed bridges recently [30–33]. Since
the deck or tower usually undergoes random vibration due to vortex shedding and buffeting, the
cable is subject to randomly parametric excitation. To the authors’ knowledge, the controls of the
stochastic stability and parametric vibration of stay cables have not been studied. In this section,
the feedback stabilization of a cable under parametric excitation is studied. Note that there will be
no vibration once a cable is stable. As in the last section, only the first mode of cable is taken into
account. Besides, the degenerated linear equation is used for the stabilization study since we are
interested in the stability of the trivial solution of the system. The equation of the controlled
system is of the form

.X þ 2zo1
’X þ o2

1X ¼ mXxðtÞ þ u1ðtÞ; ð79Þ

which is the same as system (67) except the parametric excitation. Here we are interested in the
case of primary parametric resonance, i.e.,

p ¼ 1; q ¼ 2; O=o1 ¼ 2 þ d: ð80Þ

The coefficients of averaged It #o equations (42) in this case are

mu
1 ¼ m1ðA;GÞ �

sinF�

o1
u1

	 

F�

;

mu
2 ¼ m2ðA;GÞ þ

2 cosF�

o1A� u1

	 

F�

;
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m1ðA;GÞ ¼ �zo1A �
mA cos G

4o1
;

m2ðA;GÞ ¼ ðO� 2o1Þ þ
m sin G
2o1

: ð81Þ

We still consider the ergodic control with cost function L of the form of Eq. (51) with m ¼ 1:
According to Eq. (52), the optimal control force for this system is

u�1 ¼
1

2R1o1a�
a� sinj�

@V

@a�
� 2 cosj�

@V

@g�

� �
: ð82Þ

The final dynamical programming equation is of the same form of Eq. (62) with m; m2 defined by
Eq. (81) and

m11ðaÞ ¼
1

2o2
1

; m12ðaÞ ¼
2

o2
1a2

;

m21ðaÞ ¼ m22ðaÞ ¼ 0: ð83Þ

Consider the stability of the trivial solution of system (79). The fully completed averaged It #o
equations for A; G are of the form

dA ¼ mc
1ðA;G;VÞ dt;

dG ¼ mc
2ðA;G;VÞ dt þ s dBðtÞ; ð84Þ

where

mc
1ðA;G;V Þ ¼ �zo1A �

mA

4o1
cosG�

1

4R1o2
1

@V

@A
;

mc
2ðA;G;V Þ ¼ O� 2o1 þ

m
2o1

sin G�
1

R1o2
1A2

@V

@G
ð85Þ

and V is the solution to the final dynamical programming equation

Z ¼L1ða; gÞ þ �zo1a �
ma

4o1
cos g

� �
@V

@a
�

1

8R1o2
1

@V

@a

� �2

þ O� 2o1 þ
m

2o1
sin g

� �
@V

@g
�

1

2R1o2
1a2

@V

@g

� �2

þ
s2

2

@2V

@g2
: ð86Þ

For the uncontrolled system, the averaged It #o equations for A and G are

dA ¼ �zo1A �
mA

4o1
cosG

� �
dt;

dG ¼ O� 2o1 þ
m

2o1
sin G

� �
dt þ s dBðtÞ: ð87Þ

Introduce new variable

r ¼ ln A: ð88Þ
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The It #o equation for r is obtained from Eq. (87) by using It #o differential rule

dr ¼ �zo1 �
m

4o1
cosG

� �
dt: ð89Þ

The Lyapunov exponent of the linear equation (79) is defined as

l ¼ lim
t-N

1

t
lnðX 2ðtÞ þ ’X2ðtÞ=o2

1Þ
1=2 ¼ lim

t-N

1

t
ln A ¼ lim

t-N

1

t
rðtÞ: ð90Þ

Integrating Eq. (89) and substituting the resultant into Eq. (79) yield

l ¼ �zo1 �
m

4o1
lim

t-N

1

t

Z t

0

cosGðtÞ dt: ð91Þ

It can be shown that GðtÞ is ergodic. So, the time average in Eq. (91) can be replaced by ensemble
average. Thus,

l ¼ �zo1 �
m

4o1
E½cosG�: ð92Þ

The stationary probability density pðgÞ for evaluating E½cosG� is obtained from solving the
following reduced FPK equation associated with the second equation of Eq. (87):

s2d
2p

dg2
� 2

d

dg
O� 2o1 þ

m
2o1

sing
� �

p

� �
¼ 0: ð93Þ

The solution of Eq. (93) satisfying periodic condition is

pðgÞ ¼ C exp
2

s2
ðO� 2o1Þg�

m
2o1

cos g
� �� �Z 2pþg

g
exp �

2

s2
ðO� 2o1Þg�

m
2o1

cos g
� �� �

d g; ð94Þ

where C is a normalizing constant.
For optimally controlled system (79), the fully completed averaged It #o equations are

dA ¼ �xo1A �
mA

4o1
cos G

� �
� ðV02 þ Vc

12 cosGþ Vs
12 sin GÞ

A

2R1o2
1

� �
dt;

dG ¼ O� 2o1 þ
m

2o1
sin G

� �
� ð�Vc

12 sin Gþ Vs
12 cosGÞ

1

R1o2
1

� �
dt þ s dBðtÞ: ð95Þ

Following a derivation similar to that from Eqs. (87) to (94), we obtain the stationary probability
density

pcðgÞ ¼C exp
2

s2
O� 2o1ð Þg�

m
2o1

cos g�
1

R1o2
1

Vc
12 cos gþ Vs

12 sin g
� �� �� �



Z 2pþg

g
exp

�2

s2
ðO� 2o1Þg�

m
2o1

cos g�
1

R1o2
1

ðVc
12 cos gþ Vs

12 sin gÞ
� �� �

dg; ð96Þ

and Lyapunov exponent

lc ¼ �xo1 �
V02

2R1o2
1

�
m1

4o1
þ

Vc
12

2R1o2
1

� �
E½cosG� �

Vs
12

2R1o2
1

E½sinG� ð97Þ
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l ¼ 0 or lc ¼ 0 yields the boundary of the regions of stable and unstable with probability one in
parameter space. A numerical result is obtained and shown in Fig. 10. The result obtained from
digital simulation is also shown for comparison. It is seen that the two results are in very good
agreement and the unstable region can be reduced remarkably by the feedback control. Thus, it is
always possible to suppress the cable vibration due to parametric excitation of bounded noise via
feedback stabilization.

6. Concluding remarks

In the present paper, a stochastic averaging method for s.d.o.f. strongly non-linear oscillators
subject to external and/or parametric excitations of bounded noise has been developed. Based on
the stochastic averaging method and the stochastic dynamical programming principle, a strategy
for non-linear stochastic optimal control of the strongly non-linear systems under bounded noise
excitation has been proposed. The control strategy has been applied to the control of a cable
under external bounded noise excitation. It has also been applied to stabilizing a cable under
parametric bounded noise excitation. All the analytical results are confirmed with those from
digital simulation. It has been shown that the stochastic averaging method developed is quite
accurate and the control strategy proposed is quite effective and efficient in reducing the vibration
amplitude and in extending the stability region.

Although the application of the proposed strategy to the control of cable vibration and in
stability has been illustrated with its first mode, it is easily applied to other cable mode by
changing modal parameters. If it is detected that the cable mode in resonance changes, only the
modal parameters needed to be changed.
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It should be noted that the control strategy proposed in the present paper is approxi-
mate optimal but not exact optimal since the dynamical programming principle is applied
to the averaged control system rather that the original control system. The averaged system
is the first approximation of the original system. It would be better to call the control
as quasi-optimal one. In the present paper, however, it is called optimal control just for
simplicity.
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Appendix A. Solution of final dynamical programming equation

For ergodic control of cable vibration, the final dynamical programming equation is of the
form

Z ¼L1ða; gÞ þ m1ða; gÞ
@V

@a
þ m2ða; gÞ

@V

@g
�

m11ðaÞ
4R1

þ
m21ðaÞ
4R2

� �
@V

@a

� �2

�
m12ðaÞ
4R1

þ
m22ðaÞ
4R2

� �
@V

@g

� �2

þ
s2

2

@2V

@g2
: ðA:1Þ

Suppose that L1ða; gÞ can be expanded into Fourier series with respect to g;

L1ða; gÞ ¼ L10ðaÞ þ
XN
i¼1

ðLc
1iðaÞcos igþ Ls

1iðaÞsin igÞ: ðA:2Þ

Then the solution of Eq. (A.1) can be assumed of the form of the following Fourier series:

V ða; gÞ ¼ V0ðaÞ þ
XN
i¼1

ðVc
i ðaÞcos igþ Vs

i ðaÞsin igÞ: ðA:3Þ

Note that coefficients m1 and m2 in Eqs. (60) are of the form

m1ða; gÞ ¼ m10ðaÞ þ mc
11ðaÞcos g;

m2ða; gÞ ¼ m20ðaÞ þ ms
21ðaÞsin g ðA:4Þ
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and mij ði; j ¼ 1; 2Þ are independent of g: Substituting Eqs. (A.2)–(A.4) into Eq. (A.1), we obtain
the following series of equation:

Z ¼L10ðaÞ þ m10ðaÞ
dV0

da
þ

1

2

dVc
1

da
mc

11

�
1

2
Vc

1 ms
21 �

dV0

da

� �2

þ
1

2

XN
i¼1

dVc
i

da

� �2

þ
dVs

i

da

� �2
" #( )



m11ðaÞ
4R1

þ
m21ðaÞ
4R2

� �
�

1

2

XN
i¼1

i2ðVc2

i þ Vs2

i Þ

" #
m12ðaÞ
4R1

þ
m22ðaÞ
4R2

� �
; ðA:5Þ

0 ¼Lc
11ðaÞ þ

dV0

da
mc

11ðaÞ þ
1

2

dVc
2

da
mc

11ðaÞ � Vs
2ms

21ðaÞ þ
dVc

1

da
m10ðaÞ þ Vs

1m20ðaÞ �
s2

2
Vc

1

� 2
dV0

da

dVc
1

da
þ

XN
i¼1

dVc
i

da

dVc
iþ1

da
þ

dVs
i

da

dVs
iþ1

da

� �" #
m11ðaÞ
4R1

þ
m21ðaÞ
4R2

� �

�
XN
i¼1

iði þ 1ÞðVc
i Vc

iþ1 þ Vs
i Vs

iþ1Þ

" #
m12ðaÞ
4R1

þ
m22ðaÞ
4R2

� �
; ðA:6Þ

0 ¼Ls
11ðaÞ þ

dVs
1

da
m10ðaÞ þ

1

2

dVs
2

da
mc

11ðaÞ þ Vs
2ms

21ðaÞ � Vc
1m20ðaÞ �

s2

2
Vs

1

� 2
dV0

da

dVs
1

da
þ

XN
i¼1

dVc
i

da

dVs
iþ1

da
�

dVs
i

da

dVc
iþ1

da

� �" #
m11ðaÞ
4R1

þ
m21ðaÞ
4R2

� �

þ
XN
i¼1

iði þ 1ÞðVs
i Vc

iþ1 � Vc
i Vs

iþ1Þ

" #
m12ðaÞ
4R1

þ
m22ðaÞ
4R2

� �
; ðA:7Þ

y:

The higher harmonic terms in the solution can be neglected. An approximate solution of Eq. (A.1)
is of the form

V ða; gÞEV0ðaÞ þ Vc
1 ðaÞ cos gþ Vs

1ðaÞ sin g: ðA:8Þ

To evaluate V0ðaÞ; Vc
1 ðaÞ and Vs

1ðaÞ from the coupled ordinary differential equations (A.5)–(A.7)
the Fourier coefficients are further expanded into Taylor series:

m10ðaÞ ¼ m101a þ m103a3 þ?;

m20ðaÞ ¼ m200 þ m202a2 þ?;

mc
11ðaÞ ¼ mc

111 þ mc
113a2 þ?;
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ms
21ðaÞ ¼ ms

210a�1 þ ms
212a þ?;

m11ðaÞ ¼ m110 þ m112a2 þ?;

m12ðaÞ ¼ m120a�2 þ m122 þ?;

m21ðaÞ ¼ m212a2 þ m214a4 þ?;

m22ðaÞ ¼ m220 þ m222a2 þ?; ðA:9Þ

L10ðaÞ ¼ L100 þ L102a2 þ L104a4 þ?;

Lc
11ðaÞ ¼ Lc

111a þ Lc
113a3 þ?;

Ls
11ðaÞ ¼ Ls

111a þ Ls
113a3 þ?; ðA:10Þ

V0ðaÞ ¼ V02a2 þ V04a4 þ?;

Vc
1 ðaÞ ¼ Vc

11a þ Vc
13a3 þ?;

Vs
1ðaÞ ¼ Vs

11a þ Vs
13a3 þ?: ðA:11Þ

Substituting Eqs. (A.9)–(A.10) into Eqs. (A.4)–(A.6) and letting the coefficients of the same power
of a vanish yield the coefficients of polynomials V0ðaÞ; V1ðaÞ and Vs

1ðaÞ:
For controlled system (57) and cost function Lða; g; uÞ ¼ L1ða; gÞ þ uTRu; where L1ða; gÞ ¼

L100 þ L102a2 þ Lc
111a cos gþ Ls

111a sin g; the approximate solution (A.8) is of the form of Eq. (64).
For linearized controlled system (79), the approximate solution is

V ða; gÞ ¼ V02a2 þ Vc
12a2 cos gþ Vs

12a2sin g: ðA:12Þ
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